67 research outputs found

    CLAffinity:A software tool for identification of optimum ligand affinity for competition-based primary screens

    Get PDF
    [Image: see text] A simplistic assumption in setting up a competition assay is that a low affinity labeled ligand can be more easily displaced from a target protein than a high affinity ligand, which in turn produces a more sensitive assay. An often-cited paper correctly rallies against this assumption and recommends the use of the highest affinity ligand available for experiments aiming to determine competitive inhibitor affinities. However, we have noted this advice being applied incorrectly to competition-based primary screens where the goal is optimum assay sensitivity, enabling a clear yes/no binding determination for even low affinity interactions. The published advice only applies to secondary, confirmatory assays intended for accurate affinity determination of primary screening hits. We demonstrate that using very high affinity ligands in competition-based primary screening can lead to reduced assay sensitivity and, ultimately, the discarding of potentially valuable active compounds. We build on techniques developed in our PyBindingCurve software for a mechanistic understanding of complex biological interaction systems, developing the “CLAffinity tool” for simulating competition experiments using protein, ligand, and inhibitor concentrations common to drug screening campaigns. CLAffinity reveals optimum labeled ligand affinity ranges based on assay parameters, rather than general rules to optimize assay sensitivity. We provide the open source CLAffinity software toolset to carry out assay simulations and a video summarizing key findings to aid in understanding, along with a simple lookup table allowing identification of optimal dynamic ranges for competition-based primary screens. The application of our freely available software and lookup tables will lead to the consistent creation of more performant competition-based primary screens identifying valuable hit compounds, particularly for difficult targets

    Quantitative microdialysis:Experimental protocol and software for small molecule protein affinity determination and for exclusion of compounds with poor physicochemical properties

    Get PDF
    Quantitative microdialysis is a traditional biophysical affinity determination technique. In the development of the detailed experimental protocol presented, we used commercially available equipment, rapid equilibrium dialysis (RED) devices (ThermoFisher Scientific), which means that it is open to most laboratories. The target protein and test compound are incubated in a chamber partitioned to allow only small molecules to transition to a larger reservoir chamber, then reversed-phase high performance liquid chromatography (RP-HPLC) or liquid chromatography–mass spectrometry (LC–MS) is used to determine the abundance of compound in each chamber. A higher compound concentration measured in the chamber that contains the target protein indicates binding. As a novel, and differentiating contribution, we present a protocol for mathematical analysis of experimental data. We provide the equations and the software to yield dissociation constants for the test compound-target protein complex up to 0.5 mM KD, and we quantitatively discuss the limitations of affinities in relation to measured compound concentrations

    PyBindingCurve, simulation, and curve fitting to complex binding systems at equilibrium

    Get PDF
    [Image: see text] Understanding multicomponent binding interactions in protein–ligand, protein–protein, and competition systems is essential for fundamental biology and drug discovery. Hand-deriving equations quickly become unfeasible when the number of components is increased, and direct analytical solutions only exist to a certain complexity. To address this problem and allow easy access to simulation, plotting, and parameter fitting to complex systems at equilibrium, we present the Python package PyBindingCurve. We apply this software to explore homodimer and heterodimer formations culminating in the discovery that under certain conditions, homodimers are easier to break with an inhibitor than heterodimers and may also be more readily depleted. This is a potentially valuable and overlooked phenomenon of great importance to drug discovery. PyBindingCurve may be expanded to operate on any equilibrium binding system and allows definition of custom systems using a simple syntax. PyBindingCurve is available under the MIT license at https://github.com/stevenshave/pybindingcurve as the Python source code accompanied by examples and as an easily installable package within the Python Package Index

    Reduction in Nuclear Size by DHRS7 in Prostate Cancer Cells and by Estradiol Propionate in DHRS7-Depleted Cells

    Get PDF
    Increased nuclear size correlates with lower survival rates and higher grades for prostate cancer. The short-chain dehydrogenase/reductase (SDR) family member DHRS7 was suggested as a biomarker for use in prostate cancer grading because it is largely lost in higher-grade tumors. Here, we found that reduction in DHRS7 from the LNCaP prostate cancer cell line with normally high levels of DHRS7 increases nuclear size, potentially explaining the nuclear size increase observed in higher-grade prostate tumors where it is lost. An exogenous expression of DHRS7 in the PC3 prostate cancer cell line with normally low DHRS7 levels correspondingly decreases nuclear size. We separately tested 80 compounds from the Microsource Spectrum library for their ability to restore normal smaller nuclear size to PC3 cells, finding that estradiol propionate had the same effect as the re-expression of DHRS7 in PC3 cells. However, the drug had no effect on LNCaP cells or PC3 cells re-expressing DHRS7. We speculate that separately reported beneficial effects of estrogens in androgen-independent prostate cancer may only occur with the loss of DHRS7/ increased nuclear size, and thus propose DHRS7 levels and nuclear size as potential biomarkers for the likely effectiveness of estrogen-based treatments
    • 

    corecore